Firmowe
Rok wydania: 2019
Okładka: Miękka
Stan: Nowe
Opis
Praktyczne uczenie maszynowe
Ostatnia dekada to czas bezprecedensowego rozwoju sztucznej inteligencji – nie tylko przełomowych badań nad algorytmami uczenia maszynowego, ale również coraz powszechniejszego stosowania inteligentnych maszyn w najróżniejszych dziedzinach naszego życia. Rozwój ten ogranicza niewystarczająca liczba specjalistów, łączących znajomość modelowania danych (przygotowania danych i zasad działania algorytmów uczenia maszynowego) ze znajomością języków analizy danych, takich jak SQL, R czy Python.
Inżynieria danych (ang. data science) to interdyscyplinarna wiedza, której opanowanie wymaga znajomości algebry, geometrii, statystyki, rachunku prawdopodobieństwa i algorytmiki, uzupełnionej o praktyczną umiejętność programowania. Co więcej, sztuczna inteligencja jest przedmiotem intensywnych badań naukowych i samo śledzenie postępów w tej dziedzinie wiąże się z regularnym (codziennym) dokształcaniem.
Niniejsza książka łączy w sobie teorię z praktyką. Opisuje rozwiązania kilkunastu typowych problemów, takich jak prognozowanie zysków, optymalizacja kampanii marketingowej, proaktywna konserwacja sprzętu czy oceny ryzyka kredytowego. Ich układ jest celowy – każdy przykład jest okazją do wyjaśnienia określonych zagadnień, zaczynając od narzędzi, przez podstawy uczenia maszynowego, sposoby oceny jakości danych i ich przygotowania do dalszej analizy, zasady tworzenia modeli uczenia maszynowego i ich optymalizacji, po wskazówki dotyczące wdrożenia gotowych modeli do produkcji.
Książka jest adresowana do wszystkich, którzy chcieliby poznać lub udoskonalić:praktyczną znajomość statystki i umiejętność wizualizacji danych niezbędnej do oceny jakości danych; praktyczną znajomość języka SQL, R lub Python niezbędnej do uporządkowania, wstępnego przygotowania i wzbogacenia danych; zasady działania poszczególnych algorytmów uczenia maszynowego koniecznych do ich wyboru i optymalizacji; korzystanie z języka R lub Python do stworzenia, oceny, zoptymalizowania i wdrożenia do produkcji modeli eksploracji danych. Zarówno studenci kierunków informatycznych, jak również analitycy, programiści, administratorzy baz danych oraz statystycy znajdą w książce informacje, które pozwolą im opanować praktyczne umiejętności potrzebne do samodzielnego tworzenia systemów uczenia maszynowego.
- Autor: Marcin Szeliga
- Wydawnictwo: Wydawnictwo Naukowe PWN
- Seria wydawnicza:
- Rok wydania: 2019
- Język:
- Oprawa: miękka
- Liczba stron: 360
- Format: 16.5 x 23.5 cm
- Numer ISBN: 978*****07625
- Kod paskowy (EAN): 978*****07625
Ostatnia dekada to czas bezprecedensowego rozwoju sztucznej inteligencji – nie tylko przełomowych badań nad algorytmami uczenia maszynowego, ale również coraz powszechniejszego stosowania inteligentnych maszyn w najróżniejszych dziedzinach naszego życia. Rozwój ten ogranicza niewystarczająca liczba specjalistów, łączących znajomość modelowania danych (przygotowania danych i zasad działania algorytmów uczenia maszynowego) ze znajomością języków analizy danych, takich jak SQL, R czy Python.
Inżynieria danych (ang. data science) to interdyscyplinarna wiedza, której opanowanie wymaga znajomości algebry, geometrii, statystyki, rachunku prawdopodobieństwa i algorytmiki, uzupełnionej o praktyczną umiejętność programowania. Co więcej, sztuczna inteligencja jest przedmiotem intensywnych badań naukowych i samo śledzenie postępów w tej dziedzinie wiąże się z regularnym (codziennym) dokształcaniem.
Niniejsza książka łączy w sobie teorię z praktyką. Opisuje rozwiązania kilkunastu typowych problemów, takich jak prognozowanie zysków, optymalizacja kampanii marketingowej, proaktywna konserwacja sprzętu czy oceny ryzyka kredytowego. Ich układ jest celowy – każdy przykład jest okazją do wyjaśnienia określonych zagadnień, zaczynając od narzędzi, przez podstawy uczenia maszynowego, sposoby oceny jakości danych i ich przygotowania do dalszej analizy, zasady tworzenia modeli uczenia maszynowego i ich optymalizacji, po wskazówki dotyczące wdrożenia gotowych modeli do produkcji.
Książka jest adresowana do wszystkich, którzy chcieliby poznać lub udoskonalić:praktyczną znajomość statystki i umiejętność wizualizacji danych niezbędnej do oceny jakości danych; praktyczną znajomość języka SQL, R lub Python niezbędnej do uporządkowania, wstępnego przygotowania i wzbogacenia danych; zasady działania poszczególnych algorytmów uczenia maszynowego koniecznych do ich wyboru i optymalizacji; korzystanie z języka R lub Python do stworzenia, oceny, zoptymalizowania i wdrożenia do produkcji modeli eksploracji danych. Zarówno studenci kierunków informatycznych, jak również analitycy, programiści, administratorzy baz danych oraz statystycy znajdą w książce informacje, które pozwolą im opanować praktyczne umiejętności potrzebne do samodzielnego tworzenia systemów uczenia maszynowego.
- Autor: Marcin Szeliga
- Wydawnictwo: Wydawnictwo Naukowe PWN
- Seria wydawnicza:
- Rok wydania: 2019
- Język:
- Oprawa: miękka
- Liczba stron: 360
- Format: 16.5 x 23.5 cm
- Numer ISBN: 978*****07625
- Kod paskowy (EAN): 978*****07625
ID: 1011851236
Skontaktuj się
Dodane 04 lipca 2025
Praktyczne uczenie maszynowe. Wydawnictwo Naukowe PWN
Tylko przedmiot
127 zł
do negocjacji
Przedmiot z Pakietem Ochronnym
Lokalizacja
Zwroty
Pakiet OchronnyZakup od przedsiębiorcy
Zwróć przedmiot, jeśli jest uszkodzony lub niezgodny z opisem. Zgłoś problem do 24 h od otrzymania przedmiotu. Szczegóły
Zwróć przedmiot do 14 dni od jego otrzymania przy zakupie od przedsiębiorcy. Skontaktuj się bezpośrednio ze sprzedającym, żeby zorganizować zwrot przedmiotu. Szczegóły